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Abstract
Axially symmetric equilibrium configurations of the conformally invariant
Willmore energy are shown to satisfy an equation that is two orders lower
in derivatives of the embedding functions than the equilibrium shape equation,
not one as would be expected on the basis of axial symmetry. Modulo a
translation along the axis, this equation involves a single free parameter c. If
c �= 0, a geometry with spherical topology will possess curvature singularities
at its poles. The physical origin of the singularity is identified by examining
the Noether charge associated with the translational invariance of the energy; it
is consistent with an external axial force acting at the poles. A one-parameter
family of exact solutions displaying a discocyte to stomatocyte transition is
described.

PACS numbers: 87.16.Dg, 02.40.Hw

1. Introduction

The course-grained description of membranes and interfaces often involves purely geometrical
degrees of freedom. The energy associated with tension is proportional to area. The positive
definite invariant,

H = 1

2

∫
dAKabK

ab, (1)

quadratic in the surface extrinsic curvature Kab, is a measure of the energy associated with
bending [1] (the notation we adopt is defined in an appendix). This energy has the remarkable
property that it is invariant with respect to conformal transformations of the ambient three-
dimensional space. It plays a prominent role in the physics of soft matter, notably in the
description of fluid membranes and liquid crystals (see, for example, [2, 3]). Physically
realistic models will, of course, involve additions to H which break the conformal symmetry
[4–6]: there may be tension and an osmotic pressure associated, respectively, with global
constraints on the area and on the volume; there also may be an asymmetry reflected in an
energy linear in curvature. There are, however, important lessons we can learn from the simple
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description of the surface provided by equation (1). For it is still possible to constrain the
geometry using local constraints which break the conformal invariance of equation (1) only at
isolated points.

The Euler–Lagrange equation corresponding to equation (1) is given by (∇2 is the surface
Laplacian)

−∇2K + 1
2K(K2 − 2KabK

ab) = 0. (2)

The few known analytical solutions of equation (2) are easily identified by inspection: these are
spheres with Kab = gabK/2, as well as the minimal surfaces with K = 0. In these geometries
the membrane is free of stress. There is also the well-known Clifford torus with the ratio of
wheel to tube radius of

√
2. In practice, one relies overwhelmingly on numerical analysis

to map out the configuration space (some recent developments are described in [7–9]). On
the other hand, in the early 1990s Seifert, Julicher, Lipowsky and others pointed out features
of solutions lying beyond the reach of numerical analysis that are direct consequences of the
conformal symmetry of the energy [10]. After a brief flurry of activity the subject waned.
The goal of this paper is to underscore the point that the conformal symmetry of equation (1)
merits reexamination.

We will first show that, modulo a translation parallel to its axis, all axially symmetric
equilibrium shapes satisfy the following equation:

R2

2

(
C2

⊥ − C2
‖
) − cn · X = 0. (3)

Here C⊥ and C‖ are the principal curvatures along the meridian and along the parallel,
respectively, R is the polar radius and n · X is the support function. This equation is two
orders lower in derivatives of the embedding functions X than equation (2), not one derivative,
as would have been expected on the basis of axial symmetry. It involves a single free
parameter c.

The conformal invariance of the energy may be exploited to construct a one-parameter
family of solutions of equation (3). This symmetry implies that an equilibrium geometry
maps to another equilibrium geometry under conformal transformation. A catenoid is a
minimum surface and thus an equilibrium. By inverting the catenoid in points along its axis, a
sequence of deflated compact axially symmetric equilibrium geometries displaying a discocyte
to stomatocyte transition is generated.

It is also possible to identify important properties of solutions of equation (3) without
solving it explicitly. The only solution with spherical topology that is regular at its poles is
the round sphere with c = 0. If c �= 0, however, all solutions with this topology exhibit
curvature singularities at their poles. In general, this parameter determines the strength of the
singularity. The physical interpretation of c is as an external force pulling the poles of the
membrane together. This identification is based on the existence of a conserved stress tensor
on the membrane associated with translational invariance. The forces are the Noether charges
associated with this symmetry [11]. The potential relevance of these solutions to modelling
tethered membranes will be discussed.

2. Axially symmetric equilibrium shapes

We begin by deriving equation (3). Our approach will be to adapt the variational principle
to a parametrization that exploits both the conformal symmetry of the energy and the axial
symmetry of the configuration. Technically, this is simple. However, it is also all too easy
to overlook constraints or to lose sight of the dependence on the geometry implicit in the
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parametrization. It is therefore useful to go through the details carefully. The equation itself
will be independent of the parametrization.

An axially symmetric surface is described in terms of cylindrical polar coordinates
(ρ, z, φ) on R3. The axis of symmetry coincides with the z-axis. There are two
parametrizations of the surface tailored to this symmetry that we will find useful. The
more straightforward of the two involves arc-length l along the meridian and the angle φ

along the parallels. The surface is then described by two functions ρ = R(l), and z = Z(l);
these functional relationships are not independent and they satisfy the constraint R′2 +Z′2 = 1
implied by the parametrization, where the prime denotes a derivative with respect to arc-length.
The line element on the surface is now given by

ds2 = dl2 + R(l)2 dφ2. (4)

An isothermal parametrization is obtained by replacing arc-length l by a parameter u defined
in such a way that the line element assumes the conformally flat form,

ds2 = e2σ(u)(du2 + dφ2). (5)

A comparison of the two expressions (4) and (5) identifies R = eσ , and connects the parameter
u to arc-length through the relation ∂ul = R.

To characterize the extrinsic geometry, introduce the variable � representing the angle
which the outward normal to the surface makes with the (positive) axis of symmetry; the
tangent along the meridian l is then given by (R′, Z′, 0) = (cos �,−sin �, 0). At any point
on the surface, l together with the tangent along the parallel t define the principal axes of the
surface. The corresponding curvatures are given respectively by

C⊥ = �′ = ∂u�

R
, C‖ = sin �

R
. (6)

As noted in [12], in terms of isothermal coordinates, the bending energy then assumes the
deceptively simple form

H [�] = 2π

∫
duH0, (7)

where

H0 = 1
2 {(∂u�)2 + sin2 �}. (8)

In particular, H appears to depend only on �. Importantly, σ does not appear in H, at least not
explicitly. This is a direct consequence of the global conformal invariance of the energy [1].

To determine the Euler–Lagrange equation for �, it is necessary to impose constraints
on � to reflect the fact that � parametrizes the normal vector. The variational principle must
therefore be consistent with the following local constraints,

cos � = R−1∂uR, sin � = −R−1∂uZ. (9)

We thus introduce two local Lagrange multipliers λR and λZ (as we see, one is generally not
enough) and replace H0 by H = H0 + �H where

�H = λR(cos � − R−1∂uR) + λZ(sin � + R−1∂uZ). (10)

The Euler–Lagrange equations for R and Z give

∂uλR + sin �λZ = 0 (11)

and

∂uλZ − cos �λZ = 0 (12)
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respectively. They do not involve H0. As such, they are easy to solve. The solution is

λZ = cR, λR = cZ + d. (13)

It involves two constants of integration, c and d. Note that if the latter constraint is overlooked,
we miss the constant c. This oversight is thus equivalent to setting c = 0. The role of the
constant d is trivial; it is clear that we can always set d = 0 when c �= 0 by translating the
geometry along the axis of symmetry.

The Euler–Lagrange equation for � is now given by

−∂2
u� + sin � cos � − λR sin � + λZ cos � = 0. (14)

� couples to the intrinsic geometry through the two multipliers λR and λZ given by
equation (13). Using the constraints we can cast λR and λZ non-locally in terms of �.
This has the appearance of a non-local generalization of the sine-Gordon equation. However,
as we will show this analogy is not very useful. One can do much better.

If c = 0, then λZ vanishes and λR is constant. � then uncouples from the intrinsic
geometry and one obtains a (local) double sine-Gordon equation. Such an equation was
obtained recently [13]. The non-local terms are removed. We will show, however, that this
limits the space of solutions very severely: only spheres and catenoids remain.

Remarkably, it is possible to integrate equation (14) to produce a ‘quadrature’:
1
2 (∂u�)2 − 1

2 sin2 � − λR cos � − λZ sin � = E. (15)

The technical reason why this is possible is that the two derivative terms involving the
multipliers cancel:

cos �∂uλR + sin �∂uλZ = 0. (16)

There is a deeper geometrical reason which will be developed below. The result is that a
quadrature is obtained even when c �= 0, so that neither λR nor λZ is constant. Of course, in
this case, unlike the sine-Gordon equation, it will not generally be possible to integrate the
quadrature.

There remains to address a subtlety associated with reparametrization invariance that has
been carefully sidestepped so far. Sspecifically, in the variational principle, it is necessary
to take into account the fact that the isothermal parametrization is not some arbitrary
parametrization of the surface; it depends implicitly on the surface geometry. Physical
solutions will need to be consistent with the constraint implied by this dependence. As a
consequence, the constant of integration E entering equation (15) must vanish.

To see this, note that if the interval of integration uf − ui is fixed, a global constraint∫
dl

R
= uf − ui (17)

is placed on the geometry—a constraint which is clearly unphysical. While it does respect scale
invariance, this constraint spoils the conformal invariance of the problem. Thus if the position
along the meridian is parametrized by the isothermal variable u, u itself must be allowed to
vary freely at the endpoints within the variational principle. Now, modulo equations (9), (13)
and (14), it is easily checked that δH = 2π(E(uf )δuf − E(ui)δui), where

E(u) = ∂H
∂∂u�

∂u� +
∂H

∂∂uR
∂uR +

∂H
∂∂uZ

∂uZ − H. (18)

Therefore, in a stationary configuration, E(u) must vanish at the endpoints. And because
H does not depend explicitly on u,E must be constant. As a result, it is zero everywhere.
This is, of course, the constant appearing in the quadrature (15). In the appendix, we will
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show that E can be identified as the global Lagrange multiplier associated with the constraint
(17). When E vanishes, the unphysical constraint is relaxed. This, of course, is not new: a
completely analogous problem is encountered in the parametrization of an axially symmetric
geometry by arc-length [14]; it is a subtlety that is perhaps more familiar in the modelling of
reparametrization invariant relativistic systems. In this context it is often desirable to introduce
a parameter depending explicitly on the trajectory, such as proper time, within the variational
formulation of the dynamics (see, for example, [16]). The issue is discussed in the Hamiltonian
setting in [17].

The beauty of equation (15) is not its sine-Gordon form, but its remarkably simple gauge
invariant geometrical structure which is manifest when it is expressed in terms of the principal
curvatures and the support function n · X to give equation (3).

In the next section, we will look at equilibrium from the point of view of the stresses
that exist within the membrane; this approach will permit us to interpret the constant c in
terms of external forces. Such an interpretation is not obvious within the simple economical
framework we have been using up to now. It will also permit us to establish the consistency of
equation (3) with the corresponding first integral of the shape equation (2). What will become
clear is that no single approach is appropriate everywhere.

3. Stress and Noether charges

The statement of equilibrium can be cast in terms of a conserved stress tensor [11]. This
framework does, unfortunately, involve the introduction of a little extra formalism.

Using the notation defined in the appendix, the stress in the membrane is given by [11]

fa = K
(
Kab − 1

2gabK
)
eb − ∂aKn. (19)

A simple derivation is provided in [18] using auxiliary variables. It has also been subject
of a recent detailed treatment [19]. On the free surface of the membrane, fa is conserved in
equilibrium so that

∇afa = 0, (20)

where ∇a is the surface covariant derivative compatible with gab. This description is manifestly
invariant with respect to reparametrizations of the surface. One can easily check that
equation (20) reproduces the shape equation (2). From a field theoretical point of view,
equation (20) is a direct consequence of the translational invariance of the energy. fa is a
Noether current. We will now show that the constant c appearing in equation (3) is none other
than the corresponding Noether charge.

In [11], the global statement of conservation which follows from equation (20) was
discussed. The focus, however, was on the behaviour of an isolated regular topologically
spherical membrane subject to global internal constraints; thus the boundary conditions that
were admitted were not the most general. They are certainly not the boundary conditions
that are appropriate here. For this reason, it will be useful to retrace the steps involved
in integrating the conservation law to accommodate curvature singularities or non-trivial
boundary conditions, and to provide an interpretation.

Thus, consider any closed contour 
 on the free surface of a membrane. Using Stoke’s
theorem, the conservation law equation (20) implies that the closed line integral∮

ds lafa (21)

is a constant vector F along contours that are homotopically equivalent to 
 on this surface.
Here la is the normal to 
 tangent to the surface, and ds is the element of arc-length. If the
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geometry is regular and the contour can be contracted to a point this vector vanishes. There
are, however, various possible obstructions: the membrane topology may be non-trivial, as it
is for a torus. There may also be a source of stress within the region spanned by the contour.
In the latter case the geometry may be regular if the source is distributed over a finite area. An
idealized point source of stress, however, will be reflected in a curvature singularity which is
picked up by the line integral. F has a clear interpretation as the net force acting on the region
[20].

In an axially symmetric geometry, this force can only be parallel to the axis. We thus
have (k is a unit vector pointing along the z axis)∮

ds lafa · k = 2πc, (22)

where c is a constant.
In an axially symmetric geometry, it is particularly simple to evaluate the integrand

appearing in equation (22). Without loss of generality, let the contour be a closed circle of
fixed Z. Then la is the tangent to the meridian (l = laea) and ds is the element of arc-length
along the parallel ds = R dφ. Now

lafa = 1
2

(
C2

⊥ − C2
‖
)
l − (C⊥ + C‖)′n, (23)

so that

lafa · k = 1

2
((∂u�)2 − sin2 �)

sin �

R2
+

(
∂2
u� − sin � cos �

)cos �

R2
. (24)

The integrand appearing on the lhs of (22) does not depend on φ.
To establish consistency with the approach adopted in the previous section, note that there

is a linear combination of the Euler–Lagrange equation (14) and its ‘first integral’ (15) which
permits the elimination of λR:

1
2 sin �((∂u�)2 − sin2 �) + cos �

(
∂2
u� − 1

2 sin 2�
) − λZ = 0. (25)

It should now be clear that equation (25) coincides with the statement of conservation for the
underlying stress tensor. It is the first integral of the shape equation. Consistency requires
the identification of the two constants of integration. The framework of a conservation law
provides a remarkably direct interpretation of the constant c appearing in equation (3).

We note one important point: had one insisted on holding on to a non-vanishing value
of E in equation (25) it would not have been consistent with (22). Consistency requires both
E = 0 and the identification of the constant of integration c as anticipated. In the appendix, we
also show that the unphysical constraint on the range of the isothermal parameter u manifests
itself in this framework through an additional unphysical tangential stress.

It should be pointed out that we have not found a simple derivation of equation (3) that
follows directly from equation (2). The first integral of the latter, described above, is a weaker
statement than equation (3) for it involves one extra derivative.

Of course, the existence of a first integral of the shape equation for axially symmetric
geometries is well known using alternative approaches [14, 15]. The appearance of a constant
of integration c was also noted. As Zheng and Liu, among others, have emphasized the physics
does not depend on the parametrization [15]. However, the physical role of this constant does
not appear to have been appreciated. Posing the problem in terms of a conservation law is not
just a formal exercise. What was not anticipated was that it would be possible to do much
better than equation (25). For, as we have seen, we possess the stronger result, equation (3)
involving not one but two integrations of equation (2).

Before describing new solutions of equation (3), it is a useful exercise to identify various
features of the stress tensor in the familiar regular axially symmetric geometries. In the case of
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the catenoid, a minimal surface with C⊥ + C‖ = 0, it is obvious from equation (3) that c = 0.
On the other hand, the constant c has a non-vanishing value on the Clifford torus. Consider a
circular torus characterized by two radii, a and b,

R = a + b sin �. (26)

Note that we now have l = b�, so that ∂u� = R/b. It is now simple to check that R is a
solution of equation (3) if and only if a = √

2b. The value of c is fixed, c = 1/b (and, of course
E = 0). In particular, c does not vanish. The origin of the constant c for the Clifford torus lies
clearly in its topology. Observe that whereas the stress tensor itself, given by equation (19),
vanishes everywhere on spheres and minimal surfaces, it does not on the Clifford torus.

4. New solutions

The conservation law provides the appropriate framework for characterizing equilibrium
geometries. If the parameter c appearing in this equation does not vanish, it is simple to see
that any topologically spherical solution of equation (3) must possess a curvature singularity
at its poles. The strength of this singularity is proportional to c. Furthermore, the round sphere
is the only non-singular solution of equation (3) with this topology. For if the geometry at
either pole is regular and lies on the free membrane, then the contour determining c can be
contracted onto that pole. The constant must therefore vanish: c = 0. The boundary condition
at the pole, ∂u� = 0 = sin �, then implies that d = 0 in equation (15). As a consequence
C‖ = C⊥ on the free surface. It is thus necessarily a part of a sphere.

The conformal invariance of the energy permits us to identify a one-parameter family of
solutions of equation (15). We note that, under inversion in the origin,

X → X/|X|2, (27)

a minimal surface satisfying K = 0, is mapped to a surface satisfying

K = 4
n · X
|X|2 . (28)

This surface will generally possess a curvature singularity at the origin if this point lies on
the surface. It will also describe an equilibrium as a consequence of conformal invariance.
Thus, if it is also axially symmetric, it must satisfy equation (3), except perhaps at the origin.
However, this equation can also be cast as

R2

2
(C⊥ − C‖)K − cn · X = 0. (29)

Together equations (28) and (3) imply

2R2

|X|2 (C⊥ − C‖) = c. (30)

The only axially symmetric minimal surfaces are the catenoids, given parametrically by1

R(�) = R−1
0 csc �, Z(�) = R−1

0 (ln tan �/2 + ξ0), (31)

or, equivalently, as the level set

R − R−1
0 cosh(R0Z + ξ0) = 0. (32)

1 Scaling the catenoid with an inverse length will give an inverted geometry with the ‘correct’ dimensions.
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It is characterized by a scale 1/R0 and an offset ξ0/R0 along the axis. All catenoids are related
by scaling and translation. Inverted in the origin, catenoids map to the surfaces described by
the following transcendental equation:

R

R2 + Z2
− 1

R0
cosh

(
R0Z

(R2 + Z2)
+ ξ0

)
= 0. (33)

It is simply to check that these surfaces are indeed solutions to equation (3). Remarkably, each
value of the displacement of the catenoid ξ0 with respect to the point of inversion describes a
distinct equilibrium.

All of these geometries are compact. The two poles touch each other because all distant
parts of the original catenoid are mapped to the origin, a peculiarity of our exact solution.
However, a tangent plane does exist at the origin and one can check that the Euler characteristic
is consistent with a sphere. It is appropriate to think of the topology as spherical.

If ξ0 = 0, the surface is a symmetric biconcave geometry: a discocyte. By translating
ξ0 along the axis of symmetry, a physically interesting one-parameter family of solutions is
generated; the up-down symmetry gets broken and there is a transition from a discocyte to a
stomatocyte. Inversion has connected geometries describing very distinct physical scenarios.
The geometric profiles for three different values of this offset are illustrated in figure 1. The
profiles have been rescaled so that they possess the same surface area.

− 3 − 2 − 1 0 1 2 3
R

− 1
− 0.5

0
0.5

1

Z

− 3 − 2 − 1 0 1 2 3
R

− 0.5
0

0.5
1

1.5

Z

− 3 − 2 − 1 0 1 2 3
R

0
0.5

1
1.5

2
2.5

Z

Figure 1. Geometric profiles for ξ0 = 0, 1, 2.

There are superficial similarities with the well-known discocyte to stomatocyte transition
induced by a change in the bilayer asymmetry (see, for example, [5, 6, 21]). However, whereas
conformal symmetry is broken globally in that model, here it is broken only locally (at the
poles). The appropriate parameter describing this transition is the interpolar tension. Its
properties will be discussed in detail elsewhere [22]. We will thus limit ourselves to a brief
description of the symmetric discocyte geometry.

Whereas a minimal surface (with K = 0) is unstressed, as equation (19) demonstrates,
the inverted state is under stress. In the symmetric biconcave geometry, it can be shown that
the two principal curvatures diverge as

R0C‖, R0C⊥ ≈ −2 ln(R/R0). (34)

The poles are umbilical points of the geometry, albeit singular ones. It is clear from
equation (30) that C⊥ − C‖ will generally be finite.

The curvature singularity at the poles is a manifestation of local force tethering the poles
together. It is unrelated to the fact that they touch. The magnitude of this force is given by the
Noether charge. A straightforward calculation gives

c = −4/R0.

The sign indicates that the force is directed towards the interior as we anticipated.
The exact solutions we have written down have their poles joined. More generally,

solutions of equation (3) exist with poles a fixed distance apart. Like our exact solutions, they
will be singular at these poles.
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The tether fixing this distance permits a constraint to be placed on the isoperimetric ratio:
the volume is necessarily deflated below the maximum spherical value. Remarkably, it is
possible to constrain this ratio without mutilating the conformal invariance of the energy. This
is because the source breaking this symmetry acts only at isolated points.

It may appear that the solutions we have described with tethered poles are unphysical.
However, even apart from the tethers that are pulled in the micromanipulation of membranes
(see, for example, [23]), it should be emphasized that tethers are ubiquitous features in
biological membranes. For example, it is known that the Golgi complex is not an isolated
equilibrium structure. It is stabilized against breakup by a network of microtubules that are
dismantled and reassembled during mitosis. The tethered membrane we have described is one
of those rare tractable fully-nonlinear toy models which is relevant in this context.

5. Conclusions

A new equation describing the equilibrium of an axially symmetric fluid membrane has
been presented. While our derivation exploits a specific adapted coordinate system, it is
possible to cast the equation in a form involving only geometrically significant quantities: the
principal curvatures, the support function and the radial distance function. The equation has
the remarkable property that it involves two less derivatives of the embedding functions than
does the corresponding shape equation. This behaviour is unexpected. Even in this simple
scenario there is more to be understood.

We have identified new solutions to the axially symmetric shape equation under the
influence of external forces with physical relevance. This opens a non-perturbative analytical
window on processes that are important in biophysics and soft matter. Work in this direction
is in progress.

Even if one is not interested in the construction of axially symmetric equilibrium shapes,
the problem we have addressed displays several features of interest from a geometrical point of
view. In particular, the implementation of the variational principle presents genuine subtleties
with a combination of physical constraints that need to be enforced and unphysical constraints
that need to be relaxed. How to negotiate these points without running into errors is of broader
relevance than the specific problem being addressed.
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Appendix

A.1. Notation

A surface is described by three functions X = (X1, X2, X3) of two variables ξ 1, ξ 2. The two
coordinate tangent vectors to the surface are given by ea = ∂aX, a = 1, 2 (∂a = ∂/∂ξa). Let
n be the unit normal. The metric tensor induced on the surface and the extrinsic curvature are
then given in terms of these vectors by gab = ea · eb and Kab = ea · ∂bn [24–26]. Indices are
raised with the inverse metric. dA = √

det gab d2ξ is the area measure induced on the surface
by X. K denotes (twice) the mean curvature: K = gabKab.



4282 P Castro-Villarreal and J Guven

A.2. Recovering the shape equation

It is simple to confirm that a first derivative of equation (25) gives

(−∂u + cos �)
(
∂2
u� − sin � cos �

) − 1
2

(
(∂u�)2 − sin2 �

)
(∂u� − sin �) = 0. (A.1)

A short calculation (substituting equation (6) into equation (2)) confirms that this equation
is the axisymmetric shape equation (2) in isothermal parametrization. It is also evident that
the first term appearing in equation (A.1) coincides with the ‘kinetic’ term in (2), whereas
the second term coincides with the cubic potential. This establishes explicitly the consistency
with the reparametrization invariant shape equation.

A.3. Unphysical tangential stress associated with constraint on u

We will show that a non-vanishing value for the constant E appearing in the quadrature,
associated with an unphysical constraint on the range of u, has its unphysical counterpart in
the stress tensor. If this constraint is introduced with a Lagrange multiplier Ẽ, it will add a
tangential contribution to the surface stress, given by

fa
constant u = −Ẽ

ea

R2
. (A.2)

This is a surface tension with an unusual inverse R2 dependence. If this stress is added to fa

consistency with equation (25) requires E = Ẽ. The constraint on u introduces tension. It is
not however the usual surface tension. The energy associated with a constant surface tension
µ is proportional to area and the corresponding stress is fa

tension = −µea .
The easiest way to derive equation (A.2) is to recast the integral appearing in

equation (17) in the equivalent form,

1

2π

∫
dA

R2
. (A.3)

Adding such a term breaks the translational invariance of the energy. Consequently, the
associated stress will not be conserved. The energy remains, however, invariant under
translations parallel to the axis. Thus, the projection of the stress along the axis fa · k is
still conserved. Using the auxiliary variables introduced in [18], it is straightforward to show
that the corresponding addition to the stress is the one given by equation (A.2). For the record,
the conservation law (20) is replaced by

∇afa = 4E

R4
(X − (X · k)k). (A.4)

This description of stress conservation is invariant under reparametrization; one need not
worry whether the coordinates we have chosen are well-behaved under variation.

For the same reason as a constraint on u induces an unphysical stress one also needs to be
careful when parametrizing the surface geometry by arc-length. Instead of constraining the
integral appearing in (A.3), one has a constraint on

∫
dA/R. The corresponding stress fa

constant l

is then proportional to ea/R. This constraint is relaxed in a manner entirely analogous to that
employed for the isothermal parameter u.

Finally, we comment that non-trivial equilibrium single attached particle configurations
do not exist without tension. For, as we have shown, if E = 0, then the only solution consistent
with regular geometry at the south pole is part of a sphere.
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